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1. Introduction

Partition functions for BPS operators in supersymmetric field theories are rather interesting

objects in many respects. They share information about the structure of the moduli space

of vacua and the effective number of degrees of freedom in the system. The computation

of such generating functions is generically a very hard problem but it can be simplified in

particular circumstances. The partition functions for chiral operators in four dimensional

supersymmetric gauge theories have been extensively studied in the past years, ranging

from SQCD [1 – 5] to quiver gauge theories living on branes at singularities [6 – 15]. The

latter in particular are superconformal gauge theories and have an AdS5×H dual [16 – 18].

In this case, information from the field theory and from the holographic dual can be com-

bined to give a better understanding of the superconformal theory. For the case of branes

at Calabi-Yau singularities, the combination of the Plethystic Programme with algebraic

tools in complex geometry allows to write quite explicit formulae for the partition functions.

It is a natural and interesting direction to try and extend these results to other dimen-

sions. In particular, the case of three dimensions, where the superconformal zoo is very

large, is a natural choice. Most supersymmetric Yang-Mills theories flow in the IR to a

superconformal fixed point in three dimensions. However, for theories with an AdS4 × H
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dual, it is very difficult to write the corresponding UV Yang-Mills theory1 and little is

known about the explicit description of the interacting superconformal theory which is

assumed to be a theory of membranes.

In this paper we will consider theories of membranes living at singularities R
8/Γ and

preserving N = 5 or N = 6 supersymmetry. The dual theory is AdS4 × S7/Γ. Here Γ is

any of the discrete subgroups of SU(2) and it acts freely on S7.

One of the motivation for this analysis is the fact that a superconformal Chern-Simons

theory with N = 6 supersymmetry and moduli space R
8/Zk has been recently constructed.

In fact there was recently much activity in the study of superconformal Chern-Simons

theories in three dimensions with large amount of supersymmetry in the attempt of con-

structing theories for M2-branes. A consistent theory with N = 8 supersymmetry has

been constructed with gauge group SU(2) × SU(2) in [23] and interpreted as the theory of

two M2-branes on an orbifold of flat space for some value of the Chern-Simons parame-

ter [24, 25]. Attempts to extend this construction to N branes and SU(N) gauge groups

keeping manifest N = 8 supersymmetry faced intrinsic difficulties in the theory of three

Lie algebras. The only available candidates at the moment contain ghosts [26 – 28].2 How-

ever, more recently, a consistent theory with U(N)×U(N) gauge group and bifundamental

fields which has only a manifest N = 6 supersymmetry has been constructed in [32]. The

theory has two parameters, the Chern-Simons parameter k and the number of colors N .

Based on the the analysis of the moduli space, the spectrum of chiral operators and a brane

construction, this theory has been proposed as the superconformal theory living on N M2-

branes at the orbifold singularity R
8/Zk. Further evidence of this fact was given in [33, 34].

The theory has a dual description as string theory on AdS4 × S7/Zk. In particular, for

Chern-Simons level k = 1 we recover the maximally supersymmetric theory of M2-branes

in flat space; only an N = 6 supersymmetry is however manifest in the Lagrangian.

It is then a natural question to write partition functions for these theories. Of course,

many things are known about the chiral spectrum of M2-branes in flat space. A partition

function for 1/8 BPS operators was written in [35], for example. For theories with such

amount of supersymmetry, it is natural and convenient to write down partition functions

which respect the R-symmetry of the superconformal theory, which is Spin(8) for N = 8.

This can be very efficiently done in the case of one brane.

In fact, it is known from the AdS4 × S7 dual description that there is precisely one

single trace chiral multiplet for each symmetric traceless representation of Spin(8). Making

use of this information, we show how to write the partition function of one M2-brane

in flat space and expand it in terms of Spin(8) representations.3 The supersymmetric

partition function on R
8/Zk is then obtained by using the discrete Molien formula (4.1)

1We note in passing that the analogous problem in four dimensions is solved, at least for toric Calabi-

Yaus, by the dimer technology [19 – 21]. In three dimensions there is a proposal based on crystals [22].
2Ghosts can be consistently eliminated but it seems that the resulting theory is N = 8 SYM and not its

infrared limit [29 – 31].
3We remark that, in obtaining the partition function, the Bagger-Lambert or a related theory is not

directly applied. Rather, we make use of the expected structure of the moduli space of M2-branes, i.e.

AdS4 × S7/Γ.
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and expanded in terms of representations of the R-symmetry group Spin(6). We will

also write the partition function for the theory of an M2-brane on R
8/D̂k+2 and R

8/Ên

(with n = 6, 7, 8), configurations that preserves N = 5 supersymmetry and has Sp(2)

R-symmetry. We emphasise that the partition functions precisely count chiral multiplets

whose lowest compontent is a scalar field.

We can apply the Plethystic Programme in order to get information on the moduli

space for higher N , which is Sym(R8/Γ)N , where Γ can be the abelian group Zk or any of

the non-abelian discrete subgroups of SU(2) associated with the affine Dynkin diagrams of

Dk+2, E6, E7, E8 [8, 40]. Below we write a quick reminder.

The plethystic programme: a recapitulation. Let us define the plethystic exponen-

tial of a multi-variable function g(t1, . . . , tn) that vanishes at the origin, g(0, . . . , 0) = 0, to

be

PE[g(t1, . . . , tn)] := exp

(

∞
∑

r=1

g(tr1, . . . , t
r
n)

r

)

. (1.1)

In the same way as mentioned in [8, 11], the generating function gN at finite N is found

by the series expansion of the ν - inserted plethystic exponential as

PE[νg1(t1, . . . , tn)] = exp

(

∞
∑

r=1

νrg1(t
r
1, . . . , t

r
n)

r

)

=

∞
∑

N=0

gN (t1, . . . , tn)νN . (1.2)

Information about the generators of the moduli space and the relations they satisfy can be

computed by using the plethystic logarithm, which is the inverse function of the plethystic

exponential. Using the Möbius function µ(r) we define

PL[g(t1, . . . , tn)] :=
∞
∑

r=1

µ(r) log g(tr1, . . . , t
r
n)

r
. (1.3)

The significance of the series expansion of the plethystic logarithm is stated in [8, 11]: the

first terms with plus sign give the basic generators while the first terms with the minus sign

give the constraints between these basic generators. If the formula (1.3) is an infinite series

of terms with plus and minus signs, then the moduli space is not a complete intersection

and the constraints in the chiral ring are not trivially generated by relations between the

basic generators, but receive stepwise corrections at higher degree. These are the so-called

higher syzygies.

These partition functions can be decomposed into representations of the relevant R-

symmetry group, Spin(8),Spin(6) and Spin(5) for N = 8, 6 and 5 supersymmetry respec-

tively. A word of caution is necessary. These partition functions count some gauge invariant

multitrace operators. However, since the product of short multiplets of N = 8, 6 and 5

supersymmetry may contain operators that are not protected, the partition functions are

not necessarily counting short operators except for N = 1. They should be better intended

as partition functions counting real functions on the moduli space for N branes. It would

be interesting to investigate further the properties of these partition functions and to seek

for a dual interpretation for them.
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Notation for representations. In this paper, we shall represent an irreducible rep-

resentation of a group G by its highest weight [a1, . . . , ar], where r = rank G. In order

to avoid cluttered notation, we shall also slightly abuse terminology by referring to each

character by its corresponding representation.

We next proceed with a detailed study of this class of theories.

2. The theory of N = 1 and k = 1

This theory has N = 8 supersymmetry in 2+1 dimensions and therefore all protected oper-

ators appear in irreducible representations of the R-symmetry group, Spin(8). There is an

additional quantum number which counts the number of scalar fields. This quantum num-

ber can be taken to be the conformal dimension of the corresponding operators, measured

in units of 1/2. Its corresponding fugacity is denoted by t. The moduli space is R
8 and the

scalars transform in the [1, 0, 0, 0] representation of Spin(8). It should be noted that the

fugacity t represents a real degree of freedom and not a complex degree of freedom. As a

result, the dimension of the moduli space is real and not complex. We therefore write down

the first partition function for the set of theories gN,Zk
(below Z1 means the trivial action),

g1,Z1
(t, y1, y2, y3, y4; R

8) = PE[[1, 0, 0, 0]t]. (2.1)

Here and below the notation [1, 0, 0, 0] is taken to be the character of the representation with

these highest weights. To be concrete we can choose four complex fugacities y1, y2, y3, y4

such that

[1, 0, 0, 0] =
y1

y2
+ y1 +

y3y4

y2
+

y4

y3
+

y3

y4
+

y2

y3y4
+

y2

y1
+

1

y1
. (2.2)

Using this, an explicit expression for g1,Z1
after evaluating the PE, as defined in (1.1), takes

the form

g1,Z1
(t, y1, y2, y3, y4; R

8) =
1

(

1 − t
y1

)

(1 − ty1)
(

1 − ty1

y2

)(

1 − ty2

y1

)(

1 − ty2

y3y4

)(

1 − ty3

y4

)

× 1
(

1 − ty4

y3

)(

1 − ty3y4

y2

) . (2.3)

The partition function g1,Z1
has an expansion in terms of characters of Spin(8) as

g1,Z1
(t, y1, y2, y3, y4; R

8) = 1 + [1, 0, 0, 0]t + ([2, 0, 0, 0] + [0, 0, 0, 0])t2 + · · · (2.4)

When we set all the chemical potentials of the Spin(8) symmetry to zero this function takes

the form

g1,Z1
(t, 1, 1, 1, 1; R8) =

1

(1 − t)8
= 1 + 8t + 36t2 + · · · . (2.5)

We first note that this function has a pole of order 8 at t = 1 which indicates that the real

dimension of the moduli space is 8.
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Operators on S
7. This partition function turns out to count operators which are not

protected by supersymmetry, the simplest one being Tr(φiφi), which is represented by the

singlet term in the expansion at order t2. To cure this we recall that the protected operators

are actually in one to one correspondence with harmonic functions on S7 (see, e.g., [37] for

Kaluza-Klein modes on S7),4 and the partition function should reflect this condition. It

is easily given by a relation which is quadratic in the basic fields and a singlet of Spin(8).

We therefore write a partition function for all harmonic functions on S7,

g1,Z1
(t, y1, y2, y3, y4;S

7) = (1 − t2)PE [[1, 0, 0, 0]t] . (2.6)

This partition function has a nice expansion in terms of characters:

g1,Z1
(t, y1, y2, y3, y4;S

7) =

∞
∑

n=0

[n, 0, 0, 0]tn, (2.7)

which indeed reflects the well known fact that harmonic functions at level n on S7 transform

as precisely one copy of the [n, 0, 0, 0] representation of Spin(8). Correspondingly, the N = 8

theory for one M2-brane has a set of protected operators at level n which transform under

precisely one copy of the representation [n, 0, 0, 0] of Spin(8). We can further set all Spin(8)

chemical potentials to zero and get the expressions

g1,Z1
(t, 1, 1, 1, 1;S7) =

1 − t2

(1 − t)8
=

1 + t

(1 − t)7
=

∞
∑

n=0

(n + 3)

3

(

n + 5

5

)

tn, (2.8)

The first form indicates that there are 8 generators for S7 which are subject to 1 relation of

order 2. This relation sets the radius of the S7 to a constant value. The second form indi-

cates that the real dimension of the moduli space is 7. The last form gives the dimensions of

the irreducible representations [n, 0, 0, 0] of Spin(8). For reference we quote here the general

dimension formula [39] for a generic Spin(8) representation of highest weight [n1, n2, n3, n4]:

dim[n1, n2, n3, n4] =
{1}{2}{3}{4}{12}{23}{24}{123}{234}{124}{1234}{12234}

4320
, (2.9)

with {i} = ni + 1, {ij} = ni + nj + 2, {ijk} = ni + nj + nk + 3, etc.

Decomposing Spin(8) into SU(4) × U(1). For applications with higher CS level k,

we will now rewrite the generating functions in terms of irreducible representations of

SU(4), the R-symmetry for N = 6 supersymmetry in 2+1 dimensions. For this purpose

we introduce the fugacity b for the baryonic number, and decompose the 8 dimensional

representation of SO(8) into two irreducible representations of SU(4):

[1, 0, 0, 0]t = [1, 0, 0]t1 + [0, 0, 1]t2 (2.10)

with the usual relation as borrowed from the conifold partition functions, t1 = tb, t2 = t/b

(see e.g., [12]). Here t1 is taken to count the degree of holomorphic functions on C
4 and

4References [37, 38] contain an 11 dimensional supergravity argument from which the zero modes for a

single M2-brane can be read off.
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t2 counts the degree of anti-holomorphic functions on C
4. Explicit expressions for the

characters of the SU(4) representations can be taken to be with 3 complex fugacities,

z1, z2, z3 in the form,

[1, 0, 0] = z1 +
z2

z1
+

z3

z2
+

1

z3
, [0, 0, 1] =

1

z1
+

z1

z2
+

z2

z3
+ z3 (2.11)

The generating function g1,Z1
takes the form

g1,Z1
(t1, t2, z1, z2, z3;S

7) = (1 − t1t2)PE[[1, 0, 0]t1 + [0, 0, 1]t2]. (2.12)

This function has a nice expansion in terms of irreducible representations of SU(4),

g1,Z1
(t1, t2, z1, z2, z3;S

7) =

∞
∑

n=0

∞
∑

m=0

[n, 0,m]tn1 tm2 =

∞
∑

n=0

∞
∑

m=0

[n, 0,m]bn−mtn+m. (2.13)

Comparing (2.7) with (2.13), we find the following decomposition:

[n, 0, 0, 0]Spin(8) →
n
∑

r=0

bn−2r[n − r, 0, r]SU(4) . (2.14)

A non-trivial check. The dimension formula [39] for a generic representation of SU(4)

of highest weights [n1, n2, n3] is

dim[n1, n2, n3] =
{1}{2}{3}{12}{23}{123}

12
(2.15)

=
(n1 + 1)(n2 + 1)(n3 + 1)(n1 + n2 + 2)(n2 + n3 + 2)(n1 + n2 + n3 + 3)

12
.

This can be used in checking the various relations quoted above and below.

3. Zk orbifold actions on the N = 1 theory

3.1 The case of k = 2

We next turn to the k = 2 theories. The R-symmetry is still Spin(8) and we can still count

operators using representations of Spin(8). The new ingredient is an orbifold projection on

the variable t. Under this orbifold action t → −t and we need to sum over both sectors,

with t and with −t. The resulting generating function gets a simple form, restricting to

even powers of t,

g1,Z2
(t, y1, y2, y3, y4;S

7) =

∞
∑

n=0

[2n, 0, 0, 0]t2n . (3.1)

Setting the Spin(8) chemical potentials to zero, we find

g1,Z2
(t, 1, 1, 1, 1;S7) =

1 + 28t2 + 70t4 + 28t6 + t8

(1 − t2)7
, (3.2)

suitable for a moduli space of real dimension 7.

– 6 –
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The plethystic logarithm of the generating function g1,Z2
is

PL
[

g1,Z2
(t, y1, y2, y3, y4;S

7)
]

= [2, 0, 0, 0]t2 − ([2, 0, 0, 0] + [0, 2, 0, 0] + [0, 0, 0, 0]) t4 + · · · ,

PL
[

g1,Z2
(t, 1, 1, 1, 1;S7)

]

= 35t2 − 336t4 + 5376t6 − 101856t8 . . . . (3.3)

This indicates that there are 35 basic generators transforming in the SO(8) representation

[2, 0, 0, 0] at order t2, and there are 336 basic relations transforming in the representations

[2, 0, 0, 0] + [0, 2, 0, 0] + [0, 0, 0, 0] at order t4. We note that in this case the moduli space is

not a complete intersection, since the plethystic logarithm is an infinite series.

3.2 The case of higher k

For higher values of k the orbifold action does not commute with the Spin(8) R-symmetry

group and breaks it to SU(4) with an action on the baryonic charge. The Zk orbifold acts

on the fugacity b by b → wb, with wk = 1 and we need to sum over all contributions. The

result is the following discrete Molien formula (c.f. Equation (3.1) of [8]):

g1,Zk
(t, b, z1, z2, z3) =

1

k

k−1
∑

j=0

g1,Z1
(t, wjb, z1, z2, z3) (3.4)

It is now useful to recall (2.13) and realize that only terms with n−m = 0 mod k survive

the projection. We can therefore write an expression for g1,Zk
as follows:

g1,Zk
(t, b, z1, z2, z3;S

7) =

∞
∑

n1=0

∞
∑

n2=0

k−1
∑

r=0

[kn1 + r, 0, kn2 + r]tkn1+r
1 tkn2+r

2 (3.5)

=
∞
∑

n1=0

∞
∑

n2=0

k−1
∑

r=0

[kn1 + r, 0, kn2 + r]bk(n1−n2)tk(n1+n2)+2r .

We shall see in examples below that, for an arbitrary CS level k, the generators are in the

representations [1, 0, 1], [k, 0, 0] and [0, 0, k]. This is consistent with the analysis of chiral

operators performed in [32] for the N = 6 CS theory.

An example of k = 2. As a check, we can recover the previous results for k = 2.

Formula (3.6) gives

g1,Z2
(t, b, z1, z2, z3;S

7) = 1 +

(

b2[2, 0, 0] + [1, 0, 1] +
1

b2
[0, 0, 2]

)

t2 + · · · . (3.6)

Setting b = z1 = z2 = z3 = 1, we have the unrefined partition function

g1,Z2
(t, 1, 1, 1, 1;S7) =

1 + 28t2 + 70t4 + 28t6 + t8

(1 − t2)7

= 1 + 35t2 + 294t4 + 1386t6 + 4719t8 + 13013t10 + · · · . (3.7)

The plethystic logarithm of this expression is

PL
[

g1,Z2
(t, 1, 1, 1, 1;S7)

]

= 35t2 − 336t4 + 5376t6 − 101856t8 + · · · . (3.8)

– 7 –
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Observe that the coefficient 35 of t2 in the plethystic logarithm is simply the dimension

of the SU(4) representations [1, 0, 1] + [2, 0, 0] + [0, 0, 2] in the second term of (3.7). This

indicates that the generators transform in the representations [1, 0, 1], [2, 0, 0] and [0, 0, 2],

which is indeed the decomposition of the [2, 0, 0, 0] representation of Spin(8).

An example of k = 3. The unrefined partition function is

g1,Z3
(t, 1, 1, 1, 1;S7) =

1 − 3t + 18t2 − 10t3 + 21t4 + 21t5 − 10t6 + 18t7 − 3t8 + t9

(1 − t)7(1 + t + t2)4

= 1 + 15t2 + 40t3 + 84t4 + 240t5 + 468t6 + 840t7 + · · · . (3.9)

The plethystic logarithm of this expression is

PL
[

g1,Z3
(t, 1, 1, 1, 1;S7)

]

= 15t2 + 40t3 − 36t4 − 360t5 − 492t6 + 2880t7 + · · · . (3.10)

We note that the coefficient 15 of t2 is the dimension of the representation [1, 0, 1], and the

coefficient 40 of t3 is the dimension of [3, 0, 0] + [0, 0, 3]. This indicates that the generators

transform representations [1, 0, 1], [3, 0, 0] and [0, 0, 3].

An example of k = 4. The unrefined partition function is

g1,Z4
(t, 1, 1, 1, 1;S7) =

1 + 12t2 + 108t4 + 212t6 + 358t8 + 212t10 + 108t12 + 12t14 + t16

(1 − t2)7 (1 + t2)4

= 1 + 15t2 + 154t4 + 678t6 + +2387t8 + 6461t10 . . . . (3.11)

The plethystic logarithm of this expression is

PL
[

g1,Z4
(t, 1, 1, 1, 1;S7)

]

= 15t2 + 34t4 − 512t6 + 2332t8 + · · · . (3.12)

The coefficient 15 of t2 is the dimension of the representation [1, 0, 1]. The coefficient 34 of

t4 is the dimension of [4, 0, 0]+[0, 0, 4]−([0, 2, 0] + [1, 0, 1] + [0, 0, 0]). We note that the cor-

rection [0, 2, 0]+ [1, 0, 1]+ [0, 0, 0], which is contained in the decomposition of Sym2[1, 0, 1],

is simply the relation at order t4. Therefore, the generators transform under the represen-

tations [1, 0, 1], [4, 0, 0] and [0, 0, 4].

An example of k = 5. The power series of the unrefined partition function is

g1,Z5
(t, 1, 1, 1, 1;S7) = 1 + 15t2 + 84t4 + 112t5 + 300t6 + 560t7 + 825t8 + · · · . (3.13)

The plethystic logarithm of this expression is

PL
[

g1,Z5
(t, 1, 1, 1, 1;S7)

]

= 15t2 − 36t4 + 112t5 + 160t6 + · · · . (3.14)

The coefficient 15 of t2 is the dimension of the representation [1, 0, 1]. The coefficient −36

of t4 indicates that there are relations transforming in the representation [0, 2, 0]+[1, 0, 1]+

[0, 0, 0] at order t4, as before. The coefficient 112 of t5 is the dimension of [5, 0, 0]+ [0, 0, 5].

Therefore, the generators transform representations [1, 0, 1], [5, 0, 0] and [0, 0, 5].

– 8 –
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A general formula. The general unrefined partition function which can be obtained

from (3.4) is

g1,Zk
(t, 1, 1, 1, 1;S7) =

1

3(1−t2)6(1−tk)4
×
[

3+27t2+27t4+3t6+
(

− 6+11k+6k2+k3

−54t2+27kt2−6k2t2−3k3t2−54t4−27kt4−6k2t4+3k3t4−6t6

−11kt6+6k2t6−k3t6
)

tk+
(

− 22k+4k3−54kt2−12k3t2+54kt4

+12k3t4+22kt6−4k3t6
)

t2k+
(

6+11k−6k2+k3+54t2+27kt2

+6k2t2−3k3t2+54t4−27kt4+6k2t4+3k3t4+6t6−11kt6−6k2t6

−k3t6
)

t3k+
(

− 3−27t2−27t4−3t6
)

t4k
]

. (3.15)

3.3 The k → ∞ limit: restriction to the zero baryonic subspace

In the limit where k goes to infinity, all states with non zero baryonic charge disappear

from the spectrum. We obtain a partition function which counts real functions on P
3,

g1,Zk
(t, z1, z2, z3; P

3) =

∞
∑

n=0

[n, 0, n]t2n , (3.16)

where the SU(4) representation [n, 0, n] can be interpreted as the partition function for

N = 6 chiral multiplets in the Kaluza-Klein (KK) compactification on P
3. It is well known

indeed that the KK chiral multiplets for AdS4 × P
3 fall in [n, 0, n] representations [38].

When restricted to zero SU(4) chemical potentials, we get

g1,Zk
(t, 1, 1, 1; P3) =

1 + 9t2 + 9t4 + t6

(1 − t2)6
=

∞
∑

n=0

(n + 1)2(n + 2)2(2n + 3)

12
t2n , (3.17)

where we note that this formula agrees with (3.15) in the limit k → ∞.

It is obvious from the order of the pole that we are dealing with a six dimensional

manifold. This is explained by the fact that Zk acts by reducing by a factor of k the length

of a circle in S7. In the limit k → ∞, S7 becomes P
3 and, correspondingly, M-theory

is reduced to Type IIA. The above partition function then characterises the protected

Type IIA configurations on AdS4 × P
3 [32]. We point out that this partition function is

palindromic even though it is not a CY manifold.

4. Non-abelian orbifold actions on the N = 1 theory

We now consider the orbifold actions of the binary dihedral,5 tetrahedral, octahedral

and icosahedral discrete subgroups Γ of SU(2) associated to the affine lie algebras

D̂k+2, Ê6, Ê7, Ê8, whose projections break the Spin(8) R-symmetry group into Sp(2)

and preserves N = 5 supersymmetry.6 We note that the membrane theory on R
8/Γ has a

dual AdS4 × S7/Γ.

5In this paper, we shall denote the binary dihedral group of order 4k by D̂k+2.
6
C

4/Γ, with Γ discrete subgroup of SU(2) acting diagonally on two copies of C
2, is obviously a Calabi-Yau

cone on S7/Γ. It preserves N = 6 supersymmetry for Abelian Γ and N = 5 for dihedral and exceptional

Γ [18] , as can be checked by the action on spinors. Notice however that in the text we adopted a real

notation which is related to the Calabi-Yau complex coordinates by a change of complex structure.
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Discrete Molien formula. The partition function for S7/Γ depending on the parameter

t can be easily computed by the following discrete Molien formula (c.f. Equation (3.1) of [8]):

g1,Γ(t) =
1

|Γ|
∑

γ∈Γ

1 − t2

det(I8×8 − tγ)
, (4.1)

where the determinant is taken over the 8×8 matrix representation of the group elements.

Decomposing SU(4) into Sp(2). Since the SU(4) R-symmetry is broken into Sp(2),

we will need to expand partition functions in terms of irreducible representations of Sp(2)

instead of SU(4). We shall quote here the relevant decomposition formula (setting the

fuacities zi of SU(4) to the fugacities xi of Sp(2) to be z1 = x1, z2 = x2, z3 = x1; this action

is like a “folding” of the representation similar to the action of an orientifold plane.):

[m, 0, n]SU(4) →
min{m,n}
∑

a=0

[m + n − 2a, a]Sp(2) . (4.2)

Therefore, we can rewrite (3.6) in terms of Sp(2) irreducible representations, setting b = 1

since the baryonic charge is not conserved with non-Abelian orbifold projections,

g1,Zk
(t, x1, x2) =

∞
∑

n1,n2=0

p(n1,n2)
∑

a=0

k−1
∑

r=0

[k(n1 + n2) + 2(r − a), a] tk(n1+n2)+2r , (4.3)

where p(n1, n2) = min{kn1 + r, kn2 + r}, and x1, x2 are the Sp(2) fugacities.

4.1 D̂k+2 orbifolds

Let us consider the group D̂k+2 which is a subgroup of SO(8). It is generated by
(

wI4×4 0

0 w−1I4×4

)

,

(

0 iJ4×4

−iJ4×4 0

)

(4.4)

where w2k = 1 and J4×4 is the four by four symplectic matrix.7 The matrices in the previous

formula are acting on the vector representation [1, 0, 0, 0] of Spin(8) in a complex notation

where it decomposes as a fundamental [1, 0, 0] plus anti-fundamental [0, 0, 1] representation

of SU(4). The global symmetry group SU(4)×U(1)B is reduced by the projection to Sp(2),

which is simply the group of SU(4) matrices satisfying the condition Jg = g∗J .

General partition function for D̂k+2. It can be shown [36] that substituting (4.4)

into (4.1) gives the partition function for N = 1 and Γ = D̂k+2 for an arbitrary k. This

substitution and the substitution for the other non-abelian groups is consistent with the

formulas in table (3.9) of [8].

g1,D̂k+2
(t, x1, x2) =

1

2
g1,Z2k

(t, x1, x2) + g1,Z4
(t, x1, x2) −

1

2
g1,Z2

(t, x1, x2) . (4.5)

7These generators are consistent with the generators taken from Equations (3.9) and (3.10) of [8] by

taking a 2 by 2 block matrix and composing it with the 4 by 4 matrix that has an identity in the diagonal

components, J in the upper block and −J in the lower block. A similar construction follows for the other

non-abelian subgroups of SU(2) as stated explicitly below.
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The rationale for this formula is that we can consider D̂k+2 as composed of a subgroup Z2k

and k subgroups of Z4, each with common intersection Z2. (4.5) is a surgery formula, as

in [10], for this decomposition.

An example of D̂4. Substituting k = 2 into (4.5) and using (3.7), (3.11), we find that

the unrefined partition function is given by

g1,D̂4
(t, 1, 1) =

1 + 2t2 + 68t4 + 78t6 + 214t8 + 78t10 + 68t12 + 2t14 + t16

(1 − t2)7(1 + t2)4

= 1 + 5t2 + 84t4 + 324t6 + 1221t8 + 3185t10 + · · · . (4.6)

The plethystic logarithm is given by

g1,D̂4
(t, 1, 1) = 5t2 + 69t4 − 56t6 − 2019t8 + 3368t10 + · · · . (4.7)

The coefficient 5 of t2 indicates that there are 5 generators transforming in the [0, 1] rep-

resentation, and the coefficient 69 of t4 is the dimension of the representation [4, 0] +

[2, 1] − [0, 0]. We note that the correction [0,0], which is contained in the decomposition

of Sym2[0, 1], simply indicates that there is a relation of order t4. Thus, the generators of

this theory transform in the representations [0,1], [2,1] and [4,0].

General formulae. Substituting (3.15) into (4.5), we obtain the general unrefined par-

tition function for D̂k+2:

g1,D̂k+2
(t, 1, 1) =

1

3 (1 − t2)6 (1 + t2)4 (1 − t2k)
4

×
[

3+9t2+108t4+90t6+195t8+45t10+30t12+
(

−9+11k+12k2+4k3
)

t2k

+
(

9−22k+16k3
)

t4k+
(

−3+11k−12k2+4k3
)

t6k−
(

3+71k+36k2

+4k3
)

t6(2+k) +
(

63 + 142k − 16k3
)

t4(3+k) + 3
(

− 9 − 49k + 4k2 + 4k3
)

t2(5+k)

−
(

81+71k−36k2+4k3
)

t2(6+k)+
(

3−11k+12k2−4k3
)

t2(7+k)

+
(

3 + 71k + 36k2 + 4k3
)

t2+2k − 3
(

93 − 49k − 4k2 + 4k3
)

t4+2k

−3
(

25 − 29k + 20k2 + 4k3
)

t6+2k + 3
(

−165 − 29k − 20k2 + 4k3
)

t8+2k

+
(

−63 − 142k + 16k3
)

t2+4k − 3
(

−63 + 98k + 16k3
)

t4+4k

−3
(

105 + 58k + 16k3
)

t6+4k + 3
(

105 + 58k + 16k3
)

t8+4k

+3
(

−63 + 98k + 16k3
)

t10+4k +
(

−9 + 22k − 16k3
)

t14+4k

+
(

81 + 71k − 36k2 + 4k3
)

t2+6k − 3
(

−9 − 49k + 4k2 + 4k3
)

t4+6k

+
(

495 + 87k + 60k2 − 12k3
)

t6+6k + 3
(

25 − 29k + 20k2 + 4k3
)

t8+6k

+3
(

93 − 49k − 4k2 + 4k3
)

t10+6k −
(

−9 + 11k + 12k2 + 4k3
)

t14+6k

−30t2+8k − 45t4+8k − 195t6+8k − 90t8+8k − 108t10+8k − 9t12+8k − 3t14+8k
]

, (4.8)

where we note that this formula is consistent with the above specific examples. An explicit

expression for the refined partition function is given by

g1,D̂4
(t, x1, x2) =

∞
∑

n=0

∞
∑

p=0

n
∑

j=0, 6=n−1

[2n + 4p − 2j, j]t2n+4p. (4.9)
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4.2 Ê6 orbifold

Let us consider the group Ê6 which is a subgroup of Spin(8). It is generated by

1

2

(

(−1 + i)I4×4 (−1 + i)J4×4

−(1 + i)J4×4 (−1 − i)I4×4

)

,

(

iI4×4 0

0 −iI4×4

)

(4.10)

Full partition function for Ê6. It can be shown [36] that the partition function for

N = 1 and Γ = Ê6 is

g1,Ê6
(t, x1, x2) = g1,Z6

(t, x1, x2) +
1

2
(g1,Z4

(t, x1, x2) − g1,Z2
(t, x1, x2)) . (4.11)

Substituting (4.3) into (4.11), we obtain the full partition function for Ê6.

The unrefined partition function. We obtain a simpler expression if the x’s are set

to unity:

g1,Ê6
(t, 1, 1) =

1

(1 − t2)7 (1 + 2t2 + 2t4 + t6)4

×(1 + 6t2 + 16t4 + 106t6 + 487t8 + 996t10 + 1532t12 + 2332t14 + 2872t16

+2332t18 + 1532t20 + 996t22 + 487t24 + 106t26 + 16t28 + 6t30 + t32)

= 1 + 5t2 + 14t4 + 114t6 + 451t8 + 975t10 + · · · . (4.12)

The plethystic logarithm is given by

g1,Ê6
(t, 1, 1) = 5t2 − t4 + 84t6 − 24t8 − 172t10 + · · · . (4.13)

The coefficient 5 of t2 indicates that there are 5 generators transforming in the [0, 1] rep-

resentation, the coefficient −1 of t4 indicates that there is a relation transforming in the

trivial representation, and the coefficient 84 of t4 indicates that there are 84 generators

transforming in the [6, 0] representation. Thus, the first generators of this theory trans-

form in the representations [0, 1] and [6, 0].

4.3 Ê7 orbifold

Let us consider the group Ê7 which is a subgroup of Spin(8). It is generated by

1

2

(

(−1 + i)I4×4 (−1 + i)J4×4

−(1 + i)J4×4 (−1 − i)I4×4

)

,
1√
2

(

(1 + i)I4×4 0

0 (1 − i)I4×4

)

(4.14)

Full partition function for Ê7. It can be shown [36] that the partition function for

N = 1 and Γ = Ê7 is

g1,Ê7
(t, x1, x2) =

1

2
(g1,Z8

(t, x1, x2) + g1,Z6
(t, x1, x2) + g1,Z4

(t, x1, x2) − g1,Z2
(t, x1, x2)) .

(4.15)

Substituting (4.3) into (4.15), we obtain the full partition function for Ê7.
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The unrefined partition function. We obtain a simpler expression if the x’s are set

to unity:

g1,Ê7
(t, 1, 1) =

1

(1 − t2)7 (1 + 2t2 + 3t4 + 3t6 + 2t8 + t10)4

×(1 + 6t2 + 20t4 + 46t6 + 242t8 + 686t10 + 1921t12 + 3602t14 + 6037t16

+8672t18 + 11947t20 + 14252t22 + 15728t24 + 14252t26 + 11947t28

+8672t30 + 6037t32 + 3602t34 + 1921t36 + 686t38 + 242t40 + 46t42

+20t44 + 6t46 + t48)

= 1 + 5t2 + 14t4 + 30t6 + 220t8 + 520t10 + · · · . (4.16)

The plethystic logarithm is given by

g1,Ê7
(t, 1, 1) = 5t2 − t4 + 165t8 − 396t10 + · · · . (4.17)

The coefficient 5 of t2 indicates that there are 5 generators transforming in the [0, 1] rep-

resentation, the coefficient −1 of t4 indicates that there is a relation transforming in the

trivial representation, and the coefficient 165 of t8 indicates that there are 84 generators

transforming in the [8, 0] representation. Thus, the first generators of this theory transform

in the representations [0, 1] and [8, 0].

4.4 Ê8 orbifold

Let us consider the group Ê8 which is a subgroup of Spin(8). It is generated by the same

generators as Ê6 with the addition of

1

4

(

2iI4×4 ((1 −
√

5) − i(1 +
√

5))J4×4

((1 −
√

5) + i(1 +
√

5))J4×4 −2iI4×4

)

(4.18)

Full partition function for Ê8. It can be shown [36] that the partition function for

N = 1 and Γ = Ê8 is

g1,Ê8
(t, x1, x2) =

1

2
(g1,Z10

(t, x1, x2) + g1,Z6
(t, x1, x2) + g1,Z4

(t, x1, x2) − g1,Z2
(t, x1, x2)) .

(4.19)

Substituting (4.3) into (4.19), we obtain the full partition function for Ê8.

The unrefined partition function. We obtain a simpler expression if the x’s are set

to unity:

g1,Ê8
(t, 1, 1) =

1

(1 − t2)7 (1 + 3t2 + 5t4 + 6t6 + 6t8 + 5t10 + 3t12 + t14)4

×(1 + 10t2 + 50t4 + 166t6 + 410t8 + 798t10 + 1711t12 + 4970t14

+14024t16 + 30920t18 + 53137t20 + 75728t22 + 97846t24 + 124794t26

+160086t28+194598t30+209502t32+194598t34+160086t36+124794t38

+97846t40+75728t42+53137t44+30920t46+14024t48+4970t50+1711t52
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+798t54 + 410t56 + 166t58 + 50t60 + 10t62 + t64)

= 1 + 5t2 + 14t4 + 30t6 + 55t8 + 91t10 + · · · . (4.20)

The plethystic logarithm is given by

g1,Ê8
(t, 1, 1) = 5t2 − t4 + 455t12 − 1170t14 + · · · . (4.21)

The coefficient 5 of t2 indicates that there are 5 generators transforming in the [0, 1] rep-

resentation, the coefficient −1 of t4 indicates that there is a relation transforming in the

trivial representation, and the coefficient 455 of t12 indicates that there are 455 genera-

tors transforming in the [12, 0] representation. Thus, the first generators of this theory

transform in the representations [0, 1] and [12, 0].

5. Higher N theories

Having dealt with various N = 1 theories, we turn to the problem of counting operators in

higher N case.

The moduli space. We will denote the moduli space for N branes on R
8 by SN (R8).

Restricting to S7, we quotient this out by the non-compact direction R
+ to get MN (S7) =

SN (R8)/R
+. This moduli space has a real dimension 8N − 1.

The grand canonical partition function. We use the plethystic exponential and write

down the generating function for higher values of N by introducing a fugacity ν for the

number of M2-branes. We may also choose to count operators on S7. For this purpose we

first write the grand canonical partition function for R
8,

g(ν; t, y1, y2, y3, y4; R
8) = PE

[

νg1,Γ(t, y1, y2, y3, y4; R
8)
]

, (5.1)

that has an expansion in terms of partition functions for a fixed number of branes

g(ν; t, y1, y2, y3, y4; R
8) =

∞
∑

N=0

νNgN,Γ

(

t, y1, y2, y3, y4;S
N (R8)

)

(5.2)

Explicitly, the formulae for the first few N are as follows:

g2,Γ(t, y;S2(R8)) =
1

2

[

g1,Γ(t, y; R8)2 + g1,Γ(t2, y2; R8)
]

,

g3,Γ(t, y;S3(R8)) =
1

6

[

g1,Γ(t, y; R8)3 + 3g1,Γ(t, y)g1,Zk
(t2, y2; R8) + 2g1,Γ(t3, y3; R8)

]

,

(5.3)

where we have written y1, y2, y3, y4 collectively as y.

Operators on S
7. The projection to protected operators is more complicated than for

the N = 1 case since products of short multiplets are not necessarily short. We just

remove an overall trace and regard these partition functions as counting real functions on

the moduli space for N branes. One needs to note that the restriction to a fixed radius

should be done only once and should not be symmetrised over. We get the reduced grand

canonical partition function,

gΓ(ν; t, y1, y2, y3, y4;S
7) = (1 − t2)PE

[

νg1,Γ(t, y1, y2, y3, y4; R
8)
]

. (5.4)
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An example of N = 2 and k = 1. Using the first formula in (5.3) together with (5.4),

we find that the coefficient of ν2 in the above expression is

g2,Z1
(t, y;M2(S

7)) =
1 − t2

2
(

1− t
y1

)

2 (1−ty1) 2
(

1− ty1

y2

)

2
(

1− ty2

y1

)

2
(

1− ty2

y3y4

)

2
(

1− ty3

y4

)

2

× 1
(

1 − ty4

y3

)

2
(

1 − ty3y4

y2

)

2

+
1 − t2

2
(

1 − t2

y2
1

)

(

1 − t2y2
1

)

(

1 − t2y2
1

y2
2

)(

1 − t2y2
2

y2
1

)(

1 − t2y2
2

y2
3
y2
4

)(

1 − t2y2
3

y2
4

)

× 1
(

1 − t2y2
4

y2
3

)(

1 − t2y2
3
y2
4

y2
2

) . (5.5)

This can be expanded in terms of irreducible representations of Spin(8) as

g2,Z1
(t, y;M2(S

7)) = 1+(2[2, 0, 0, 0] + 1) t2+(2[3, 0, 0, 0] + 2[1, 0, 0, 0] + [1, 1, 0, 0]) t3+· · · .

(5.6)

Note that at order 2 we again find the singlet operator of the form Tr(φiφi) or Tr(φi)Tr(φi),

either of which is unprotected. This is the simplest example which demonstrates that

higher N generating functions do not count protected operators. When setting the Spin(8)

chemical potentials to zero we find

g2,Z1
(t, 1, 1, 1, 1;M2(S7))) =

1 + 28t2 + 70t4 + 28t6 + t8

(1 − t)15(1 + t)7

= 1 + 8t + 71t2 + 400t3 + 1884t4 + 7344t5 + · · · (5.7)

with the pole of order 15 at t = 1 indicating that the reduced moduli space is indeed

8 × 2 − 1 = 15 real dimensional. The plethystic logarithm of this expression is

PL[g2,Z1
(t, 1, 1, 1, 1;M2(S

7)))] = 8t + 35t2 − 336t4 + 5376t6 − 101856t8 + · · · . (5.8)

This indicates that there are 8 generators transforming in the Spin(8) representation

[1, 0, 0, 0] at order t, 35 generators transforming in [2, 0, 0, 0] at order t2, and 336 relations

transforming in [0, 2, 0, 0] + [2, 0, 0, 0] + [0, 0, 0, 0] at order t6.

An example of N = 2 and k = 2. For simplicity, let us work with unrefined partitions.

Starting from the case of N = 1, we have

g1,Z2
(t, 1, 1, 1, 1; R8) =

g1,Z2
(t, 1, 1, 1, 1;S7)

1 − t2
=

1 + 28t2 + 70t4 + 28t6 + t8

(1 − t2)8
, (5.9)

where we have used (3.7) in the second equality. Using the first formula in (5.3) and

restricting to S7, we find that

g2,Z2
(t, 1, 1, 1, 1;M2(S7))=

1

(1−t2)15 (1+t2)8
×(1+28t2+728t4+6356t6+34140t8

+110300t10+254184t12+403508t14+478662t16+403508t18

+254184t20+110300t22+34140t24+6356t26+728t28+28t30+t32)

= 1 + 35t2 + 960t4 + 12600t6 + 109230t8 + · · · . (5.10)
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The plethystic logarithm of this expression is

PL[g2,Z2
(t, 1, 1, 1, 1;M2(S

7)))] = 35t2 + 330t4 − 6720t6 + 8100t8 + · · · . (5.11)

This indicates that there are 35 generators transforming in the Spin(8) representation

[2, 0, 0, 0] at order t2, and 330 generators transforming in [4, 0, 0, 0] + [2, 0, 0, 0] + [0, 0, 0, 0]

at order t4.

The palindromic property. Note that the previous partition functions are palin-

dromic. This happened for all the partition functions for one or more membranes that

we encountered in this paper. It can be explained as follows. Recall that the palindromic

property characterizes Calabi-Yau (Gorenstein) singularities [15]. Although we are consid-

ering real coordinates, the partition function for a membrane on R
8/Γ can be equivalently

considered as a partition function for holomorphic functions on the complexification C
8/Γ

which is indeed a non-compact Calabi-Yau singularity. Analogously, for N membranes, we

deal with the symmetric product of N Calabi-Yau four-folds which is also a non-compact

Calabi-Yau singularity.8

Acknowledgments

A. H. and A. Z. thank the Galileo Galilei Institute for Theoretical Physics for the hos-

pitality and the INFN for partial support during the completion of this work. A. Z. is

supported in part by INFN and MIUR under contract 2005-024045-004 and 2005-023102

and by the European Community’s Human Potential Program MRTN-CT-2004-005104.

N. M. would like to express his gratitude to the following: his family for the warm en-

couragement and support; his colleagues Alexander Shannon, Benjamin Withers, William

Rubens, and Sam Kitchen for valuable discussions; and, finally, the DPST Project and the

Royal Thai Government for funding his research.

A. Character computations: plethystic amusement

In this section we present an efficient method for computing all characters of a given group.

This method is good when the rank of the group is small enough. We will demonstrate

this method for the group SO(5), with Sp(2) characters being obtained as by-products.

Moreover, SU(4) characters will be mentioned at the end of this section. This method can

be repeated for the group SO(8).

SO(5) characters. Let us start by looking at a generic representation of SO(5) of the

form [n1, n2]SO(5) with dimension formula [39] given by

dim[n1, n2]SO(5) =
(n1 + 1)(n2 + 1)(n1 + n2 + 2)(2n1 + n2 + 3)

6
. (A.1)

8This should be contrasted with the three dimensional case where moduli spaces for N > 1 are not

Calabi-Yau [15] since symmetrized products of odd dimensional Calabi-Yaus are not.
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We can introduce a formal generating function

gSO(5)(t1, t2;w1, w2) =

∞
∑

n1=0

∞
∑

n2=0

[n1, n2]SO(5)t
n1

1 tn2

2 , (A.2)

where t1, t2 are weights which keep track with the highest weight representation of the

group, while w1, w2 are the SO(5) fugacities. The function gSO(5) can be summed easily.

One can write down the expression when the SO(5) chemical potentials are set to zero,

gSO(5)(t1, t2; 1, 1) =
1 − t21 − 4t1t2 + t1t

2
2 + 4t21t2 − t22t

3
1

(1 − t1)5(1 − t2)4
, (A.3)

and immediately realize that this can be written in terms of the simple representations of

SO(5),

gSO(5)(t1, t2;w1, w2) = (1 − t21 − [0, 1]t1t2 + t1t
2
2 + [0, 1]t21t2 − t31t

2
2)PE [[1, 0]t1 + [0, 1]t2] ,

(A.4)

One can compute the character of the representation with highest weights [n1, n2] as the

coefficient of the tn1

1 tn2

2 term in the power expansion of gSO(5). For completeness we record

here a possible explicit form for the two representations which are needed to evaluate this

expansion,

[1, 0]SO(5) =
w2

2

w1
+ w1 +

1

w1
+ 1 +

w1

w2
2

, [0, 1]SO(5) =
w1

w2
+ w2 +

1

w2
+

w2

w1
. (A.5)

As an example, let us consider the SO(5) representation [1, 1]. Equation (A.2) suggests

that the character of [1, 1] is simply the coefficient of t1t2 in the power expansion of the

right hand side of (A.4). Substituting (A.5) into (A.4) and expanding it as a power series,

we find that the coefficient of t1t2 is

[1, 1]SO(5) =
w1

w3
2

+
w2

1

w3
2

+
2

w2
+

1

w1w2
+

2w1

w2
+

w2
1

w2
+2w2+

w2

w2
1

+
2w2

w1
+w1w2+

w3
2

w2
1

+
w3

2

w1
. (A.6)

Sp(2) characters: by-products. The dimension formula [39] of the representation

[n1, n2]Sp(2) is given by

dim[n1, n2]Sp(2) =
(n1 + 1)(n2 + 1)(n1 + n2 + 2)(n1 + 2n2 + 3)

6
. (A.7)

Observe that this is simply the interchange of n1 and n2 in formula (A.1), i.e.

dim[n1, n2]Sp(2) = dim[n2, n1]SO(5) . (A.8)

Therefore, the corresponding (A.3) for Sp(2) is

gSp(2)(t1, t2; 1, 1) = gSO(5)(t2, t1; 1, 1) . (A.9)

We note that dim[1, 0]Sp(2) = 4 and dim[0, 1]Sp(2) = 5. According to (A.4), we have

gSp(2)(t1, t2;w1, w2) = (1 − t22 − [1, 0]t2t1 + t2t
2
1 + [1, 0]t22t1 − t32t

2
1)PE [[1, 0]t2 + [0, 1]t1]

= gSO(5)(t2, t1;w2, w1) . (A.10)

Thus, we arrive at an amusing relation between irreducible representations of Sp(2) and

SO(5):

[n1, n2]Sp(2)(w1, w2) = [n2, n1]SO(5)(w2, w1) . (A.11)
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SU(4) characters. By a similar process as above, we find the following generating func-

tion for SU(4):

gSU(4)(t1, t2, t3; z1, z2, z3) = (1 − [0, 0, 1]t1t2 − t1t3 − t22 − [1, 0, 0]t2t3

+t21t2 + [1, 0, 0]t1t
2
2 + [0, 1, 0]t1t2t3 + [0, 0, 1]t22t3 + t2t

2
3

−t21t
3
2 − [0, 0, 1]t1t

2
2t

2
3 − [0, 1, 0]t1t

3
2t3 − [1, 0, 0]t21t

2
2t3 − t32t

2
3

+[0, 0, 1]t21t
3
2t3 + t21t

2
3t

2
2 + t1t

4
2t3 + [1, 0, 0]t1t

3
2t

2
3 − t21t

4
2t

2
3)

× PE [[1, 0, 0]t1 + [0, 1, 0]t2 + [0, 0, 1]t3] . (A.12)

The character of the irreducible representation [n1, n2, n3]SU(4) can be simply read out from

the coefficient of tn1

1 tn2

2 tn3

3 in the power series of this expression.
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